An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU
نویسندگان
چکیده
Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.
منابع مشابه
A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers w...
متن کاملAnalysis of Performance and Implementation Complexity of Array Processing in Anti-Jamming GNSS Receivers
This paper investigates the existing spatial-temporal interference suppression methods which attempt to mitigate interference before the GNSS receiver performs correlation. These methods comprise non-blind signal processing techniques and blind signal processing techniques by using the antenna array. Also, an extensive comparison of these techniques for GNSS is established, which is evaluated f...
متن کاملA Low-Complexity GPS Anti-Spoofing Method Using a Multi-Antenna Array
Spoofing attacks can completely mislead the position solution provided by global navigation satellite systems (GNSS). Recently, several anti-spoofing techniques have been introduced to combat spoofing attacks. However, in most cases the available anti-spoofing techniques are computationally complex or limited to a specific spoofing scenario. This paper provides a low computational complexity ap...
متن کاملDesign and Implementation of Real-Time Software Radio for Anti-Interference GPS/WAAS Sensors
Adaptive antenna array processing is widely known to provide significant anti-interference capabilities within a Global Navigation Satellite Systems (GNSS) receiver. A main challenge in the quest for such receiver architecture has always been the computational/processing requirements. Even more demanding would be to try and incorporate the flexibility of the Software-Defined Radio (SDR) design ...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sensors
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2016